OFFICE OF NAVAL RESEARCH Contract N00014-76-C-0408 Project NR 092-555 Technical Report No. 8 DETACHMENT OF AN ELASTIC MATRIX FROM A RIGID SPHERICAL INCLUSION by A. N. Gent Institute of Polymer Science The University of Akron Akron, Ohio 44325 July, 1980 Reproduction in whole or in part is permitted for any purpose of the United States Government Approved for Public Release; Distribution Unlimited AE COPY | SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | 411K-0. | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | | | NO. 3. RECIPIENT'S CATALOG NUMBER | | Technical Report 8 | 14 | | 4. TITLE (and Substitute) | S. TYPE OF REPORT & PENIOD COVER | | Detachment of an Elastic Matrix from a | Technical Reported | | Rigid Spherical Inclusion | S. PERFORMING ONG. REPORT NUMBER | | The state of s | | | 7. AUTHOR(a) | S. CONTRACT OR GRANT NUMBERY | | 10 A. N. /Gent / | NOBB14-76-C-0498 | | 10 A. H. Joene | 3 4000 | | 5. PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TA | | Institute of Polymer Science/ | | | The University of Akron Akron, Ohio 44325 | NR 092-555 | | 11. CONTROLLING OFFICE NAME AND ADDRESS | 12. REPORT DATE | | Office of Naval Research | July 1, 1980 | | Power Program | 15. NUMBER OF PAGES (12) | | Arlington. Virginia 22217 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 15. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 16. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 17. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling OFFICE 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling OFFICE 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling OFFICE 18. MONITORING AGENCY NAME & ADDRESS(If different from Controlling OFFICE 18. MONITORING AGENCY NAME & ADDRESS ADDRES | 16. SECURITY CLASS (of Misself) | | CATIFICA | Unclassified | | (11) Jul 80 | | | | 154. DECLASSIFICATION/DOWNGRADIN | | 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribut | | | | ion unlimited. | | Approved for public release; distribut | ion unlimited. | | Approved for public release; distribut | ion unlimited. | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY HOTES Submitted for publication in: Journal 19. REY WORDS (Continuo en reverse side if necessary and identify by block non | ion unlimited. *********************************** | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the abelrace entered in Block 20, if different 18. Supplementary notes Submitted for publication in: Journal 19. KEY WORDS (Continue on reverse also if necessary and identity by block now Adhesion, Bonding, Elastomers, Fillers | ion unlimited. *********************************** | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY HOTES Submitted for publication in: Journal 19. REY WORDS (Continuo en reverse side if necessary and identify by block non | ion unlimited. *********************************** | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the abelrace entered in Block 20, if different 18. Supplementary notes Submitted for publication in: Journal 19. KEY WORDS (Continue on reverse also if necessary and identity by block now Adhesion, Bonding, Elastomers, Fillers | ion unlimited. *********************************** | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the abelrace entered in Block 20, if different 18. Supplementary notes Submitted for publication in: Journal 19. KEY WORDS (Continue on reverse also if necessary and identity by block now Adhesion, Bonding, Elastomers, Fillers | ion unlimited. *********************************** | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES Submitted for publication in: Journal 19. KEY WORDS (Continue on reverse side 11 necessary and identify by block man Adhesion, Bonding, Elastomers, Fillers Reinforcement 20. APSTRICT (Continue on reverse side 11 necessary and identify by block man An approximate theoretical treat | ion unlimited. of Materials Science bee; , Fracture, Hysteresis, ment is given for detach | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Submitted for publication in: Journal 19. REY WORDS (Continue on reverse side if necessary and identify by block non- Adhesion, Bonding, Elastomers, Fillers Reinforcement 20. Agg: RACT (Continue on reverse side if necessary and identify by block non- An approximate theoretical treat ment of an elastomer from a rigid sphe | ion unlimited. of Materials Science bee; Fracture, Hysteresis, ment is given for detach rical inclusion by a | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different 18. SUPPLEMENTARY HOTES Submitted for publication in: Journal 19. KEY WORDS (Continue on reverse also if necessary and identity by block man Adhesion, Bonding, Elastomers, Fillers Reinforcement 20. APSTRACT (Continue on reverse also if necessary and identity by Neck man An approximate theoretical treat ment of an elastomer from a rigid sphe tensile stress applied to the elastome | ion unlimited. of Materials Science of Materials Science peo) , Fracture, Hysteresis, ment is given for detach rical inclusion by a ric matrix. The inclusi | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the electrons entered in Block 20, if different 18. SUPPLEMENTARY NOTES Submitted for publication in: Journal 19. KEY WORDS (Continue on reverse side if necessary and identify by block man Adhesion, Bonding, Elastomers, Fillers Reinforcement 20. APSTRICT (Continue on reverse side if necessary and identify by block man approximate theoretical treatment of an elastomer from a rigid sphe tensile stress applied to the elastome is assumed to have an initially-debond | ion unlimited. of Materials Science oeo; Fracture, Hysteresis, ment is given for detach rical inclusion by a ric matrix. The inclusi ed patch on its surface | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different 18. SUPPLEMENTARY NOTES Submitted for publication in: Journal 19. KEY WORDS (Continue on reverse side if necessary and identify by block man Adhesion, Bonding, Elastomers, Fillers Reinforcement 20. APSTRACT (Continue on reverse side if necessary and identify by block man approximate theoretical treatment of an elastomer from a rigid sphe tensile stress applied to the elastome is assumed to have an initially-debond and the conditions for growth of the p | ion unlimited. of Materials Science ober) , Fracture, Hysteresis, ment is given for detach rical inclusion by a ric matrix. The inclusied patch on its surface atch are derived from | | Approved for public release; distribut 17. DISTRIBUTION STATEMENT (of the electrons entered in Block 20, if different 18. SUPPLEMENTARY NOTES Submitted for publication in: Journal 19. KEY WORDS (Continue on reverse side if necessary and identify by block man Adhesion, Bonding, Elastomers, Fillers Reinforcement 20. APSTRICT (Continue on reverse side if necessary and identify by block man approximate theoretical treatment of an elastomer from a rigid sphe tensile stress applied to the elastome is assumed to have an initially-debond | ion unlimited. of Materials Science of Materials Science over, Fracture, Hysteresis, ment is given for detach rical inclusion by a ric matrix. The inclusi ed patch on its surface atch are derived from trophic debonding is pre | 401069 The state of s Jab debond is small. The strain energy dissipated as a result of this detachment, and hence the mechanical hysteresis, are also evaluated. When a reasonable value is adopted for Young's modulus(E) of the elastomeric matrix, it is found that detachment from small inclusions. of less than about 0.1 mm in diameter, will not occur, even when the level of adhesion is relatively Instead, rupture of the matrix near the inclusion becomes the preferred mode of failure at an applied stress given approximately by E/2. For still smaller inclusions, of less than about 1 m in diameter, rupture of the matrix becomes increasingly difficult, due to the increasing importance of a surface energy term. These considerations account for the general features of reinforcement of elastomers. Small-particle fillers become effectively bonded to the matrix, whereas larger inclusions induce fracture near them, or become detached from the matrix, at applied stresses that can be calculated from the particle diameter, the strength of adhesion, and the elasticity of the matrix material. # Detachment of an Elastic Matrix from a Rigid Spherical Inclusion ### 1. Introduction Elastomers are often filled with high loadings of relatively rigid particulate materials in order to stiffen and strengthen them. These effects depend strongly upon the particle size of the filler and upon the degree of bonding between the elastomer and the filler (1). When the particle size is small, less than about 1 µm, even a moderate degree of interaction between the elastomeric matrix and the filler seems to be sufficient to produce a surprisingly high level of reinforcement. When the particle size is relatively large, the matrix seems to be easily detached from the filler particles at relatively low tensile stresses and the level of reinforcement is correspondingly low (1). The tensile stress at which an elastic matrix will become detached from a rigid spherical inclusion is derived here on simple theoretical grounds. Only low concentrations of filler are considered, such that the strain fields around each particle do not interact to a significant degree, and the matrix itself is treated as a linearly-elastic material, with Young's modulus <u>E</u>. Detachment is assumed to start at an already-debonded region, present initially on the surface of the particle. It is assumed to take place by growth of this debonded region when the elastic strain energy thereby released in the matrix is greater than the energy required for further debonding. This is a straightforward application of Griffith's fracture criterion (2). It leads to a prediction of catastrophic debonding when the initially-debonded region is small in size. Moreover, the amount of strain energy lost from the system as a result of debonding can be readily evaluated from the difference between the strain energy levels before and after debonding has taken place. An estimate can be made in this way of the additional mechanical hysteresis due to detachment of the matrix from the filler. A somewhat similar analysis has recently been put forward, dealing with the conditions for detachment from a spherical inclusion under a triaxial tension (3). That study differs from the present analysis in two important respects. The process of detachment was assumed to take place simultaneously at all points on the spherical surface, rather than progressively from an initially debonded region. Secondly, the strain energy released by dilation of the matrix after detachment has taken place was considered to be wholly expended in the detachment process itself, in the form of bond fracture energy. In contrast, the analysis developed here, although rather approximate in nature, treats the debonding process as a continuous one, starting from the hypothetical initially-debonded region on the surface of the inclusion. It leads to the prediction of both stable and unstable (i.e., catastrophic) modes of growth of the debond, depending upon the size of the initial debond relative to the size of the inclusion. In a final section, other modes of failure are considered. It is shown that detachment from small inclusions is improbable, even when the level of adhesion is low and that fracture of the matrix itself in the vicinity of the inclusion becomes increasingly difficult as the size of the inclusion is reduced. These conclusions explain, at least in part, the reinforcing action of small particles. #### 2. Theoretical considerations #### (a) Critical stress for detachment A single spherical inclusion within an elastic matrix is shown schematically in Figure 1. A small circular area on the surface of the inclusion is assumed to be debonded from the matrix initially. Growth of this debonded patch will take place when the tensile stress <u>o</u> applied to the specimen at its distant edges reaches a critical value, denoted <u>o</u>. A relation for this critical stress is now derived by means of an approximate energy analysis. For simplicity, the initially-debonded patch is assumed to be located on the surface of the inclusion in the direction of the applied stress, Figure 1. Other locations would result in higher values of the critical stress, as will be shown later, so that this assumption leads to minimum values for σ_a . The stress field set up in the material is divided conceptually into two regions, as shown in Figure 1: a far-field region where the strain energy density \underline{u} is assumed to be unaffected by the presence of the debonded area, and a region in the immediate vicinity of the debonded zone, shown shaded in Figure 1, within which the strain energy density is assumed to be effectively zero because the debonded zone cannot transmit a tensile stress to the matrix. A similar assumption was made by Rivlin and Thomas in their analysis of an edge crack in a homogeneous elastic solid (4). The volume ΔV of the unstressed region will be given by $\Delta V = k (r \sin \theta)^3$ (1) on general dimensional grounds, where $\underline{r}\theta$ is the radius of the circular debonded zone and \underline{k} is a dimensionless quantity evaluated later. The area \underline{A} of the debonded zone is $\underline{2\pi r^2(1-\cos\theta)}$. The loss $\underline{\Delta W}$ in elastic strain energy when the debonded zone increases in area by $\underline{\Delta A}$ is then given by $$\nabla M = \Omega(\frac{9\theta}{9(\nabla \Lambda)})(\frac{9\theta}{9\theta})\nabla \Psi$$ $$= (3k/4\pi) (Ur \sin 2\theta) \Delta A \qquad (2)$$ In accordance with Griffith's fracture criterion, it is assumed that the debonded area will grow if this reduction in stored strain energy is equal to, or greater than, the energy required for debonding, namely $G_a \Delta A$, where G_a is the bond fracture energy per unit of bonded surface. The criterion for debonding thus becomes: $$U \ge 4\pi G_a/3kr \sin 2\theta. \tag{3}$$ In terms of the applied tensile stress $\underline{\sigma}$, \underline{U} is given by $\underline{\sigma^2/2E}$ where \underline{E} is Young's modulus for the composite material. The applied stress $\underline{\sigma}$ necessary to cause debonding is therefore given by $$\sigma_a^2 = 8\pi G_a E/3kr \sin 2\theta. \tag{4}$$ In order to obtain a value for the numerical quantity k, this result is now specialized to the case when θ is small and the debonded zone becomes a small circular region of radius $\underline{a} = r\theta$. Mossakovskii and Rybka have treated the corresponding case of the detachment of an elastic half-space from a rigid plate when a circular debond of radius \underline{a} is located at the interface (5). They deduced that $$\sigma a^2 = 2\pi G_a E/3a. \tag{5}$$ On comparing equations (4) and (5), taking $\underline{\theta}$ to be small, a value of 2 is obtained for the numerical parameter \underline{k} . It is clear from equation (4) that the tensile stress for detachment is quite—large both when the radius $\underline{r\theta}$ of the initial debond is small, and also when the debonded region is large, when $\underline{\theta} \simeq 90^{\circ}$. It passes through a minimum value when $\underline{\theta} = 45^{\circ}$, i.e., for inclusions which are debonded initially over a substantial fraction of their surface. This minimum value of σ_a is given by $$\sigma_{a \min}^2 = 4\pi G_a E/3r.$$ (6) It is similar in magnitude to the stress causing detachment of an elastic material from a rigid substrate, initiated by a debond of radius \underline{r} , equation (5). It is also similar to that deduced for detachment from a spherical inclusion of radius \underline{r} under a triaxial tension σ_{t} (3), $$\sigma_t^2 = 8G_aE/3r$$. It represents (in the present instance) the lowest stress at which detachment would occur under the most favorable circumstances, i.e., when a relatively large debond is present at the inclusion surface initially, and it is located in a particularly favorable way with respect to the direction of the applied tension. Under all other circumstances the debonding stress will be higher than that given by equation (6). Indeed, when the size of the initial debond, represented by the angle θ , is small, it is clear from equation (4) that debonding will take place in a catastrophic way because the stress required to maintain the debonding process decreases as θ increases. Once the applied stress and stored elastic energy reach their critical levels, then the debond will grow abruptly until $\sin 2\theta$ attains its original value again. If θ is small to start with, then debonding will take place until $\underline{\theta} \simeq 90$, i.e., until debonding is virtually complete. #### (b) Energy dissipated in debonding The loss of stored elastic energy as a result of this abrupt debonding can be evaluated by means of equation (1). The unstressed zone will increase from its small initial size to a final volume of approximately $2r^3$, when \underline{k} is given the value of 2 deduced earlier. Thus, the decrease in strain energy is approximately $2Ur^3$. If it is assumed, as seems likely, that detachment occurs simultaneously at both poles of the inclusion, then the decrease in strain energy for each inclusion becomes $4Ur^3$. The number n of inclusions per unit volume of the filled material is given by $$n = 3c/4\pi r^3$$ where \underline{c} is the volume fraction of the composite material occupied by inclusions. Thus, the total reduction in strain energy density caused by debonding is obtained as $$\Delta U/U_{o} = 3c/\pi, \tag{7}$$ where $\underline{U_0}$ denotes the input strain energy up to the point of detachment. The ratio $\underline{\Delta U/U_0}$, referred to hereafter as the mechanical hysteresis ratio \underline{H} , is therefore predicted to be independent of particle size and proportional to the volume fraction c of particles in the composite. It should be noted that equation (7) is based upon two special assumptions, which will only hold under quite restricted circumstances. The first is that the stress fields around each particle are assumed not to interact significantly. This implies that the particles are separated by distances comparable to, or greater than, their diameters, and this in turn implies that their volume fraction <u>c</u> is small, not more than about 10 per cent. The second assumption is that small debonded areas are present initially on the particle surface, and that they are favorably located with respect to the applied stress direction. This implies that there are, in fact, many small debonded areas per particle. Those suitably positioned with respect to the applied stress will presumably act as nuclei for the detachment process. #### 3. Other modes of failure The mechanism of detachment treated in the preceding section is likely to be valid only for relatively large particles, weakly bonded to the matrix, and different mechanisms of detachment will operate under other circumstances. For example, when the level of adhesion between the matrix and the inclusion is sufficiently high, the elastomeric matrix will undergo cavitation in the vicinity of the particle (6). In this case, the matrix does not detach from the particle directly, but instead it undergoes internal rupture near the particle surface, nucleated by a small precursor void present within the elastomeric matrix. The void is torn open by triaxial tensions generated in the neighborhood of the particle. The condition for this mode of failure to occur is that the applied tensile stress must reach a critical value, given by (6, 7) $$\sigma_{\mathfrak{F}} \simeq (E + P) / 2, \tag{8}$$ where \underline{P} denotes the ambient pressure (usually atmospheric pressure and hence small in comparison with \underline{E}). On comparing the minimum value of the critical stress for detachment, equation (6), with the predictions of equation (8) for the cavitation stress $\sigma_{\mathbf{f}}$, it can be seen that detachment will not take place if $$G_a / r > 3E/16 \pi$$ (9) because the detachment stress $\sigma_{\underline{a}}$ then exceeds the stress $\sigma_{\underline{f}}$ for cavitation. When \underline{E} is given a value of 3 MPa, characteristic of rubbery solids, and $\underline{G}_{\underline{a}}$ a value of 10 J/m^2 , representing a relatively weakly-bonded interface (8), then equation (9) predicts that detachment will not take place for particles having a diameter of less than about 0.1 mm. Instead, the matrix will abruptly tear open near the particle at the applied stress given by equation (8). Although this failure process is quite different from the detachment mechanism considered earlier, nevertheless the mechanical hysteresis ratio <u>H</u> will still be given by equation (7), to a good approximation, because the assumptions on which that equation was based are still valid. The cavities form abruptly and grow to a size that relieves the high stresses set up in the vicinity of the particle surface in the same way as the abrupt growth of a debond on the particle surface. Indeed, the cavities often tear towards the particle surface as they develop and bring about debonding in this way (6). The initial failure stress, however, is quite different and depends only upon Young's modulus <u>E</u>, equation (8). If the precursor voids within the elastomeric matrix are even smaller, less than about 100 nm in diameter, then the critical applied stress $\sigma_{\underline{f}}$ will no longer be given by equation (8). Instead, an additional constraint on the expansion of a void becomes significant, arising from its own surface energy. This additional term, given by $2\gamma/a$ where γ denotes the surface energy of the matrix and \underline{a} denotes the radius of the void, becomes large when the radius \underline{a} is small. Thus, the applied stress must overcome both the elastic resistance to expansion, represented by \underline{E} in equation (8), and a large surface energy contribution as well (9). that no large precursor voids can be located within the immediate vicinity of a small inclusion. Indeed, it seems reasonable to assume that the largest void that can exist near to an inclusion will be about one order of magnitude smaller in size than the inclusion itself. Thus, cavitation stresses for particles of less than about 1 µm in diameter are likely to be considerably larger than those predicted by equation (8), due to the large surface energy contribution in these cases. Moreover, the smaller the particle, the larger is the stress required to create a cavity in its vicinity by tearing open a precursor void. It can be concluded that an elastomeric matrix will not detach from small particules, less than about 0.1 mm in size, by debonding, even when the level of adhesion is low. Furthermore, the process of local cavitation in the matrix, leading to the same effects as detachment, will become increasingly difficult as the particle size is further reduced. Rigid inclusions of less than about 1 µm in size are likely to be effectively bonded to the matrix in all circumstances and thus act as reinforcing fillers, in accord with experience (1). #### References - G. Kraus, "Reinforcement of Elastomers by Particulate Fillers," Chap. 8 in "Science and Technology of Rubber," ed. by F. R. Eirich, Adacemic Press, Inc., New York, 1978. - A. A. Griffith, Philos. Trans. Roy. Soc. (London) 221, 163-198 (1920). - 3. D. W. Nicholson, J. Adhesion <u>10</u>, 255-260 (1979). - 4. R. S. Rivlin and A. G. Thomas, J. Polymer Sci. <u>10</u>, 291-318 (1953). - V. I. Mossakovskii and M. T. Rybka, P.M.M. <u>28</u>, 1061-1069 (1964); J. Appl. Math. Mech. <u>28</u>, 1277-1286 (1964). - A. E. Oberth, Rubber Chem. Technol. <u>40</u>, 1337-1363 (1967). - 7. A. N. Gent and P. B. Lindley, Proc. Roy. Soc. (Lond.) <u>A249</u>, 195-205 (1958). - 8. A. Ahagon and A. N. Gent, J. Polymer Sci.: Polymer Phys. Ed. 13, 1285-1300 (1975). - A. N. Gent and D. A. Tompkins, J. Polymer Sci., Part A-2 7,1483-1488 (1969). Figure 1. Sketch of a single inclusion showing debonded area and associated volume <u>AV</u> effectively free from stress. ## ENERGETIC MATERIALS RESEARCH ## DISTRIBUTION LIST | | No. Copies | | No. Copies | |--------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------|------------| | Assistant Secretary of the Navy (R, E, and S) Attn: Dr. R.E. Reichenbach | 1 | AFATL
Eglin AFB, FL 32542
Attn: Dr. Otto K. Heiney | 1 . | | Room 5E787
Pentagon
Washington, DC 20350 | | AFRPL
Code PACC
Edwards AFB, CA 93523 | 1 . | | Office of Naval Research
Code 473 | 10 | Attn: Mr. W. C. Andrepont | _ | | Arlington, VA 22217
Attn: Dr. R. Miller | | AFRPL
Code CA
Edwards AFB, CA 93523 | i, | | Office of Naval Research
Code 2008 | 1 | Attn: Dr. R. R. Weiss | | | Arlington, VA 22217
Attn: Dr. J. Enig | • | Code AFRPL MKPA
Edwards AFB, CA 93523
Attn: Mr. R. Geisler | 1 | | Office of Naval Research
Code 260 | 1 | Code AFRPL MKPA | 1 | | Arlingon, VA 22217
Attn: Mr. D. Siegel | • | Edwards AFB, CA 93523
Attn: Dr. F. Roberto | | | Office of Naval Research
Western Office
1030 East Green Street
Pasadena, CA 91106
Attn: Dr. T. Hall | 1 . | AFSC
Andrews AFB, Code DLFP
Washington, DC 20334
Attn: Mr. Richard Smith | 1 | | Office of Naval Research Eastern Central Regional Office | ·2 | Air Force Office of Scientific Research Directorate of Chemical & Atmospheric Sciences | 1 | | 495 Summer Street
Boston, MA 02210
Attn: Dr. L. Peebles | | Bolling Air Force Base
Washington, DC 20332 | | | Dr. A. Wood | | Air Force Office of Scientific Research | 1 | | Office of Naval Research San Francisco Area Office One Hallidie Plaza Suite 601 San Francisco, CA 94102 Attn: Dr. P. A. Miller | 1 | Directorate of Aero-
space Sciences
Bolling Air Force Base
Washington, DC 20332
Attn: Dr. L. H. Caveny | | | Defense Technical Information
Center
DTIC-DDA-2
Cameron Station
Alexandria, VA 22314 | n 12 | Anal-Syn Lab Inc.
P.O. Box 547
Paoli, PA 19301
Attn: Dr. V. J. Keenan | 1 | DEF. | | No. Copies | | No. Copie | |---|------------|--|-----------| | Army Ballistic Research Labs
Code DRDAR-BLP
Aberdeen Proving Ground, MD
21005 | 1 | Hercules Inc. Eglin
AFATL/DLDL
Eglin AFB, FL 32542
Attn: Dr. Ronald L. Simmons | 1 | | Attn: Mr. L. A. Watermeier Army Ballistic Research Labs ARRADCOM Code DRDAR-BLP Aberdeen Proving Ground, MD 21005 | 1 | Hercules Inc. Magna
Bacchus Works
P.O. Box 98
Magna, UT 84044
Attn: Mr. E. H. DeButts | . 1 | | Attn: Dr. Ingo W. May Army Ballistic Research Labs ARRADCOM Code DRDAR-BLT Aberdeen Proving Ground, MD | 1 | Hercules Inc. Magna
Bacchus Works
P.O. Box 98
Magna, UT 84044
Attn: Dr. James H. Thacher | | | 21005 Attn: Dr. Philip Howe Army Missile Command Code DRSME-RK | 2 | HQ US Army Material Development
Readiness Command
Code DRCDE-DW
5011 Eisenhower Avenue
Room 8N42 | 1 | | Redstone Arsenal, AL 35809
Attn: Dr. R. G. Rhoades
Dr. W. W. Wharton | | Alexandria, VA 22333 Attn: Mr. S. R. Matos | , | | Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22314
Attn: Dr. C. B. Henderson | t | Johns Hopkins University APL Chemical Propulsion Information Agency Johns Hopkins Road Laurel, MD 20810 Attn: Mr Theodore M. Gilliland | | | Ballistic Missile Defense Advanced Technology Center P.O. Box 1500 Huntsville, AL 35807 Attn: Dr. David C. Sayles | 1 | Lawrence Livermore Laboratory
University of California
Livermore, CA 94550
Attn: Dr. M. Finger | 1 | | Ballistic Research Laboratory
USA ARRADCOM
DRDAR-BLP | 1 | Lawrence Livermore Laboratory
University of California
Livermore, CA 94550
Attn: Dr. R. McGuire | 1 | | Aberdeen Proving Ground, MD
21005
Attn: ·Dr. A. W. Barrows | | Lockheed Missiles and Space Co.
P.O. Box 504
Sunnyvale, CA 94088 | 1 | | Hercules Inc. Cumberland Aerospace Division Allegany Ballistics Lab P.O. Box 210 Cumberland, MD 21502 Attn: Dr. Rocco Musso | 2 | Attn: Dr. Jack Linsk Org. 83-10 Bldg. 154 | | | · | No. Copies | • | No. Co | |--|------------|--|--------| | Lockheed Missile & Space Co.
3251 Hanover Street
Palo Alto, CA 94304 | 1 | Naval Research Lab
Code 6100
Washington, DC 20375 | 1 | | Attn: Dr. H. P. Marshall
Dept. 52-35 | | Naval Sea Systems Command
Washington, DC 20362 | 1 | | Los Alamos Scientific Lab
P.O. Box 1663
Los Alamos, NM 87545
Attn: Dr. R. Rogers, WX-2 | 1 | Attn: Mr. G. Edwards, Code 62R3
Mr. J. Murrin, Code 62R2
Mr. W. Blaine, Code 62R | | | Attn: Dr. K. Rugers, WA-2 | _ | Naval Sea Systems Command | 1 | | Los Alamos Scientific Lab
P.O. Box 1663
Los Alamos, NM 87545
Attn: Dr. B. Craig, M Division | 1 | Washington, DC 20362
Attn: Mr. R. Beauregard
SEA 64E | | | Naval Air Systems Command
Code 330 | 1 | Naval Surface Weapons Center
Code R11 | 1 | | Washington, DC 20360
Attn: Mr. R. Heitkotter | | White Oak, Silver Spring, MD
20910 | ٠. | | Mr. R. Brown | | Attn: Dr. H. G. Adolph | | | Naval Air Systems Command
Code 310 | 1 | Naval Surface Weapons Center
Code R13 | 1 | | Washington, DC 20360
Attn: Dr. H. Mueller
Dr. H. Rosenwasser | • | White Oak, Silver Spring, MD
20910
Attn: Dr. R. Bernecker | | | Naval Explosive Ordnance | 1 | Naval Surface Weapons Center | 1 | | Disposal Facility Indian Head, MD 20640 Attn: Lionel Dickinson | • | Code R10
White Oak, Silver Spring, MD
20910 | · | | Code D | | Attn: Dr. S. J. Jacobs | | | Naval Ordnance Station
Code 5034 | 1 | Naval Surface Weapons Center
Code R11 | 1 | | Indian Head, MD 20640
Attn: Mr. S. Mitchell | | White Oak, Silver Spring, MD
20910 | | | | 1 | Attn: Dr. M. J. Kamlet | | | Naval Ordnance Station Code PM4 | 1 | Naval Surface Weapons Center | 1 | | Indian Head, MD 20640
Attn: Mr. C. L. Adams | | Code RO4
White Oak, Silver Spring, MD
20910 | | | Dean of Research | 1 | Attn: Dr. D. J. Pastine | , | | Naval Postgraduate School
Monterey, CA 93940
Attn: Dr. William Tolles | | Naval Surface Weapons Center
Code R13 | 1 | | Naval Research Lab | 1 | White Oak, Silver Spring, MD
20910 | | | Code 6510
Washington, DC 20375 .
Attn: Dr. J. Schnur | - | Attn: Dr. E. Zimet | | | | No. Copies | • | No. Copi | |--|------------|---|----------| | Naval Surface Weapons Center
Code R101
Indian Head, MD 20640
Attn: Mr. G. L. MacKenzie | 1 | Navai Weapons Center
Code 388
China Lake, CA 93555
Attn: D. R. Derr | 1 | | Naval Surface Weapons Center
Code R17
Indian Head, MD 20640
Attn: Dr. H. Haiss | · 1 | Naval Weapons Center
Code 388
China Lake, CA 93555
Attn: Dr. R. Reed Jr. | 1 | | Naval Surface Weapons Center
Code R11
White Oak, Silver Spring, MD
20910
Attn: Dr. K. F. Mueller | 1 | Naval Weapons Center
Code 385
China Lake, CA 93555
Attn: Dr. A. Nielsen | 1 | | Naval Surface Weapons Center
Code R16
Indian Head, MD 20640
Attn: Dr. T. D. Austin | 1 | Naval Weapons Center
Code 3858
China Lake, CA 93555
Attn: Mr. E. Martin | 1 | | Naval Surface Weapons Center
Code R122 | 1 | Naval Weapons Center
China Lake, CA 93555
Attn: Mr. R. McCarten | 1 | | White Oak, Silver Spring, MD 20910 Attn: Mr. L. Roslund Naval Surface Weapons Center | | Naval Weapons Support Center
Code 5042
Crane, Indiana 47522
Attn: Dr. B. Douda | 1. | | Code R121
White Oak, Silver Spring, MD
20910
Attn: Mr. M. Stosz | | Rohm and Haas Company
723-A Arcadia Circle
Hunsville, Alabama 35801 | 1 | | Naval Weapons Center
Code 3853
China Lake, CA 93555
Attn: Dr. R. Atkins | | Attn: Dr. H. Shuey Strategic Systems Project Office Dept. of the Navy Room 901 | 1 | | Naval Weapons Center
Code 3205 | 1 | Washington, DC 20376
Attn: Dr. J. F. Kincaid | | | China Lake, CA 93555
Attn: Dr. L. Smith | | Strategic Systems Project Office
Dept. of the Navy
Room 1048 | 2 | | Naval Weapons Center
Code 3205
China Lake, CA 93555
Attn: Dr. C. Thelen | 1 | Washington, DC 20376 Attn: Mr. E. L. Throckmorton Mr. R. Kinert | | | Naval Weapons Center
Code 385
China Lake, CA 93555
Attn: Dr. A. Amster | 1 | Thiokol Chemical Corp. Brigham
City
Wasatch Division
Brigham City, UT 84302
Attn: Dr. G. Thompson | 1 · | | | | | | | <u>N</u> | o. Copies | No. | Copies | |--|-----------|--|------------| | USA ARRADCOM
DRDAR-LCE
Dover, NJ 07801
Attn: Dr. R. F. Walker | 1 | Georgia Institute of Technology
Office of Research Administration
Atlanta, Georgia 30332
Attn: Professor Edward Price | 1 | | USA ARRADCOM
DRDAR-LCE
Dover, NJ 07801
Attn: Dr. N. Slagg | 1 | Univ. of Utah Dept. of Mech. & Industrial Engine MEB 3008 Salt Lake City, Utah 84112 Attn: Dr. Stephen Swanson | 1
ering | | U.S. Army Research Office
Chemistry Division
P.O. Box 12211
Research Triangle Park, NC
27709 | 1 | Space Sciences, Inc.
135 Maple Avenue
Monrovia, CA 91016
Attn: Dr. M. Farber | 1 | | Institute of Polymer Science
University of Akron
Akron, OH 44325
Attn: Professor Alan N. Gent | | Washington State University
Dept. of Physics
Pullman, WA 99163
Attn: Professor G.D. Duvall | 1 | | SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
Attn: Dr. Y.M. Gupta | 1 | Univ. of Maryland
Department of Mechanical Eng.
College Park, MD 20742
Attn: Professor R.W. Armstrong | ī | | Graduate Aeronautical Lab.
California Institute of Technolo
Pasadena, CA 91125
Attn: Professor W.G. Knauss | • . | The Catholic University of America
Physics Department
520 Michigan Ave., N.E.
Washington, D.C. 20017
Attn: Professor T. Litovitz | 1 | | Pennsylvania State University Dept. of Mechanical Engineering University Park, PA 16802 Attn: Professor Kenneth Kuo Office of Naval Research | 1 | Sandia Laboratories
Division 2513
P.O. Box 5800
Albuquerque, N.M. 87185
Attn: Dr. S. Sheffield | 1 | | 800 N. Quincy St. Arlington, VA 22217 Attn: Dr. G. Neece Code 472 Thiokol Corp. Huntsville | | IBM Research Lab.
K42.282
San Jose, CA 95193
Attn: Dr. Thor L. Smith | 1 | | Huntsville Div.
Huntsville, AL 35807
Attn: Mr. J.D. Byrd | • | California Institute of Tech. Dept. of Chemical Engineering Pasadena, CA 91125 Attn: Professor N.W. Tschoegl | 1 | | Washington State University Dept. of Physics Pullman, WA 99163 Attn: Prof. T. Dickinson | | Northwestern University Dept. of Civil Engineering Evanston, IL 60201 Attn: Professor J.D. Achenbach | 1 | | University of California Dept. of Chemistry 405 Hilgard Avenue Los Angeles, CA 90024 | | Office of Naval Research
Structural Mechanics Program
Arlington, VA 22217 | 1 | | | <i>t-</i> | | · "" | DEF. | | No. Copies | |---|-------------| | University of California
Berkeley, CA 94720
Attn: Prof. A.G. Evans | 1 | | Texas A&M Univ. Dept. of Civil Engineering College Station, TX 77843 Attn: Professor Richard A. Sch | l
napery | | SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025
Attn: Mr. M. Hill | 1 | | Los Alamos Scientific Laborator
Los Alamos, NM 87545
Attn: Dr. J.M. Walsh | ry 1 |